On inequalities for integral operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lφ Integral Inequalities for Maximal Operators

Sufficient (almost necessary) conditions are given on the weight functions u(·), v(·) for Φ−1 2 [ ∫ Rn Φ2 ( C2(Msf)(x) ) u(x)dx ] ≤ Φ−1 1 [ C1 ∫ Rn Φ1(|f(x)|)v(x)dx ] to hold when Φ1, Φ2 are φ-functions with subadditive Φ1Φ 2 , and Ms (0 ≤ s < n), is the usual fractional maximal operator. §

متن کامل

Some sharp inequalities for multilinear integral operators

In this paper, some sharp inequalities for certain multilinear operators related to the Littlewood-Paley operator and the Marcinkiewicz operator are obtained. As an application, we obtain the (L p , L q)-norm inequalities and Morrey spaces boundedness for the multilinear operators.

متن کامل

Inequalities for Norms of Some Integral Operators

Let (A(a)u)(x) := a 0 (1 − xt) −1 u(t) dt, 0 < a < 1. Properties of the operators A(a) as a → 1 are studied. It is proved that A := A(1) is a bounded, positive self-adjoint operator in H = L 2 [0, 1], ||A|| ≤ π, while A : C(0, 1) → C(0, 1) is unbounded.

متن کامل

On weighted inequalities for certain fractional integral operators

and Dn denotes the derivative operator ∂/∂x1, . . . ,∂xn. The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville andWeyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function 2F1(α,β;γ;x), the following ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1970

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500000975